Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(12): 3264-3280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33406893

RESUMO

Consumption of plant-based meat analogues offers a way to reduce the environmental footprint of the human diet. High-moisture extrusion cooking (HMEC) and shear cell processing both rely on thermo-mechanical treatment of proteins to product fibrous meat-like products. However, the mechanisms underlying these processes are not well understood. In this review we discuss the effect of thermo-mechanical processing on the physicochemical properties and phase behavior of proteins and protein mixtures. The HMEC and shear cell processes are comparable in their basic unit operations, which are (1) mixing and hydration, (2) thermo-mechanical treatment, and (3) cooling. An often overlooked part of the extruder that could be crucial to fibrillation is the so-called breaker plate, which is situated between the barrel and die sections. We found a lack of consensus on the effect of heat on protein-protein interactions, and that the experimental tools to study protein-protein interactions are limited. The different mechanisms for structure formation proposed in literature all consider the deformation and alignment of the melt. However, the mechanisms differ in their underlying assumptions. Further investigation using novel and dedicated tools is required to fully understand these thermo-mechanical processes.


Assuntos
Culinária , Proteínas de Plantas , Fenômenos Químicos , Temperatura Alta , Humanos , Carne , Proteínas de Plantas/química
2.
Curr Res Food Sci ; 3: 134-145, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914129

RESUMO

Mixed gels of plant proteins are being investigated for use as meat analogues. Juiciness is an important characteristic for the acceptability of meat analogues. The juiciness is assumed to be governed by the hydration properties, or water holding capacity, of the gel (WHC). We analysed the WHC of single-phase gels of respectively soy protein and gluten by applying Flory-Rehner theory. This enabled us to describe the WHC of more the complex mixed gels. The WHC of mixed soy protein - gluten gels is shown not to be a linear combination of their constituents. At high volume fractions, soy forms a continuous network and swells similarly to pure soy without being hindered by gluten. However, increasing gluten content leads to a gradual decrease in soy swelling. This is due to the mechanical interaction between soy and gluten. We propose that gluten-rich gels have a continuous gluten network that entraps soy and hinders its swelling. The elastic moduli of the gluten network were extracted from WHC data, and are in reasonable agreement with experimentally determined moduli. A better understanding of the effect of mixed gel composition on WHC is valuable for the development of the next generation meat analogues.

3.
Food Chem ; 330: 127182, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526648

RESUMO

In this paper we report the importance of swelling on gastric digestion of protein gels, which is rarely recognized in literature. Whey protein gels with NaCl concentrations 0-0.1 M were used as model foods. The Young's modulus, swelling ratio, acid uptake and digestion rate of the gels were measured. Pepsin transport was observed by confocal laser scanning microscopy using green fluorescent protein (GFP). With the increase of NaCl in gels, Young's modulus increased, swelling was reduced and digestion was slower, with a reduction of acid transport and less GFP present both at surface and in the gels. This shows that swelling affects digestion rate by enhancing acid diffusion, but also by modulating the partitioning of pepsin at the food-gastric fluid interface and thereby the total amount of pepsin in the food particle. This perspective on swelling will provide new insight for designing food with specific digestion rate for targeted dietary demands.


Assuntos
Mucosa Gástrica , Proteínas do Soro do Leite/metabolismo , Difusão , Digestão , Módulo de Elasticidade , Alimentos , Géis/química , Pepsina A/metabolismo , Estômago , Proteínas do Soro do Leite/química
4.
Faraday Discuss ; 158: 65-75; discussion 105-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23234161

RESUMO

Magnetic resonance imaging (MRI) offers unique opportunities to monitor moisture transport during drying or heating of food, which can render unexpected insights. Here, we report about MRI observations made during the drying of broccoli stalks indicating anomalous drying behaviour. In fresh broccoli samples the moisture content in the core of the sample increases during drying, which conflicts with Fickian diffusion. We have put the hypothesis that this increase of moisture is due to the stress diffusion induced by the elastic impermeable skin. Pre-treatments that change skin and bulk elastic properties of broccoli show that our hypothesis of stress-diffusion is plausible.


Assuntos
Brassica/química , Análise de Alimentos/métodos , Caules de Planta/química , Água/análise , Dessecação , Difusão , Elasticidade , Tecnologia de Alimentos , Temperatura Alta , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...